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SUMMARY ".

Complex systems iequire intell ent control strategies, and AI

concepts and too's may contribute io the management of such systems. At
A

Rand, we have been developing Aapproaches to systems management

problems. Our work involves thre 6principal components: (o a model of

the system to be managed; < a situation assessment function that

employs the model to interpret sensor data;>4nd a planning and

control function that employs the model to select-desired actions. This

broad approach generalizes many of the recent advanced r applications

and defines a substantial R&D program. Our current R&D efforts aim at

improving the technologies for modeling and simulation, for

systematizing and improving situation assessment methods, and for

expanding our repertoire of planning strategies and tools. This paper

describes these efforts in overview.
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I. INTRODUCTION

Al FOR SYSTEMS MANAGEMENT

SITUATION SYSTEM PLANNING

ASSESSMENT MODEL &

CONTROL

SENSORS EFFECTORS

Figure 1

To manage systems, we need to understand what they are doing and

how they will respond to potential interventions. In addition, we need

a method for generating and selecting interventions that will produce

desirable outcomes. We use the term "situation assessment" to refer to

the task of understanding the system's current behavior. We use the

term "future projection" to refer to the task of anticipating the likely

response of the system to potential interventions. We refer to the

process of designing, evaluating, and implementing intervening actions

as "planning and control."

We believe that system management is an ideal problem for

artificial intelligence. Previous applications of Al have led us to

believe that the three management functions discussed above require
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knowledge-based, heuristic methods. In particular, we see a primary

role for a system model that mediates situation assessment and planning

and control.

A sstem model, in our framework, represents the elements of the

domain and their interrelationships. Such a model supports situation

assessment by providing a basis for linking observable data to apparent

system states through causal or "diagnostic" reasoning. When we observe

some data, we attempt to find the possible states of the system which

the model suggests would produce those data. In a similar way, a system

model can support future projection. In this case, we employ the model

as a simulation. Planning requires that we examine one or more

alternative simulations to identify a desirable future among our

options.

Recent advances in knowledge representation bring us close to the

point where we can use one form of system model for all these purposes.

In conventional approaches, system models can either support simulation

or analysis, but not both. The lack of flexibility in traditional

models arises from the particular forms of representation and computing

previously available. For example, typical simulations comprise event

or time-stepped procedural descriptions of state changes. To answer

questions with such models, we specify initial states, simulate all

state changes over some period, and then retrospectively analyze the

simulator's outputs. In contrast to such traditional approaches, we are

moving toward declarative descriptions of modeled entities and their

behaviors. These descriptions can be applied for a variety of purposes,

including time-stepped or event-stepped simulation, deductive question-

A !
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answering, situation assessment, and, when indicated, debugging and

model revision.

Much of our current work focuses on improved modeling methods and

more systematic tect-niques for interpretation and forecasting. In the

remainder of this paper, I will describe representative projects,

accomplishments, and current objectives in these areas.

L 4 -



II. SITUATION ASSESSMENT AND PLANNING APPLICATIONS

Our research group has developed several prototype applications of

the model-based approach to situation assessment and planning. These

are shown in Table 1.

TABLE 1.

SOME CURRENT APPLICATIONS OF SITUATION ASSESSMENT AND PLANNING

TASK MODEL SITUATION ASSESSMENT PLANNING

1. Air traffic Civilian aviation Monitoring current Heuristic flight

control flightplans traffic and projected planning and

collisions collision avoidance

2. Tactical TECA--own and Monitoring opposing Threat avoidance

Navy opposing forces force positions and countermeasures

(naval platforms) movements to detect

threats

3. Strategic ROSS--own and Current status of Dynamic force

Air Forces opposing air forces forces and projected management

and air defenses battle outcomes

4. Civil ROSIE rules for Analyzing the basis Designing and

justice product liability of current decisions assessing potential

law and cases and settlements legislation

' - ,-- ,.. . . . .. .. . . . . . . . . . . : ' i' ' .:' ' 
'
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These four applications are representative of the wide range of

systems which may prove fruitful targets for more sophisticated

management techniques. In air traffic control, for example, Rand

personnel have designed and tested heuristic planning techniques for ei,

route flight control. This prototype system contains rules about how

airplanes move and how their flightplans can be altered by controller

commands. These rules are used to project ahead and spot potential

collisions as well as to evaluate the desirability of heuristically

proposed fixes. In the Navy application, the TECA system contains rules

about how our own and opposing ships behave and the circumstances under

which one force threatens another. This knowledge can be used to look

ahead for potential threats as well as exploring the space of

alternative actions that avoid these threats. In the strategic

application, the ROSS system models our own and opposing air forces to

enable faster-than-real-time evaluation of air engagements. This should

permit military planners to explore new concepts of dynamic force

management. The fourth application above has begun only recently. It

aims at modeling part of the civil justice system concerned with product

liability lawsuits and settlements. The premises, inferences, and

decisions reached in a representative sample of precedent cases define a

model of the decisionmaking process. This model is captured in the form

of rules written in the ROSIE programming language. This model allows

analysts to foresee the likely effects of a change in the law by

extrapolating from its inferred effects over a sample of cases. An

illustration of a legal rule represented in the ROSIE programming

language is shown below:
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[RULE5: ORDINARY CARE DEFINITION]

If the victim is an adult who does know the proper use of the product

and (the victim does know 'the product is defective'

and the victim does continue the use of the product)

or ((the victim does know 'the product is dangerous'

or the victim does know 'the product is defective')

and (the victim is careless in the use of the product

or the victim is inattentive in the use of the product))

or (the victim is improper in the use of the product

and ((there is a warning by the manufacturer

and that warning does describe the improper use of the product)

or (there is a warning by the seller

and that warning does describe the improper use of the product)))

or (the victim does know 'the victim is sensitive to the product'

and the victim does continue the use of the product)

or the victim does use poor practices in the use of the product

or (there is a means for protection from the hazard of the product

and the victim does not use that means),

assert the use of (the product) by the victim does not involve

ordinary-care.

Each of these applications is implemented as a contemporary AI

system. However, each is rudimentary and only a pre-prototype of what

an operational system would require. The experimental systems reveal

both the strengths and weaknesses of Al tools for managing complex

systems. Most of these systems require extensive human involvement. On

the other hand, the requirements for planning and control generally
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exceed human computing capabilities. As a consequence, we look for

salutary combinations of human and machine intelligence. The machine,

for example, can project future flight positions of aircraft more

accurately and quickly than humans. On the other hand, humans can ofttn

prescribe plan revisions that achieve desired results simply and

efficiently. Thus, in a domain like air traffic control, we are aiming

to articulate the elements of the problem-solving task, to develop Al

functions to accomplish subtasks, and to integrate humans and machines

in effective, cooperative problem-solving teams. Similar aims guide our

work in the other areas cited.
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III. PROGRESS IN MODELING AND SIMULATION i

Al IN MODELING AND SIMULATION .i
NEW CAPABILITIES

SYMBOLIC DESCRIPTIONS AND DEDUCTIONS

INTEGRATION OF PHYSICAL PROCESSES CONSTRAINTS
AND BEHAVIORAL MODELS

NEW LANGUAGES
RULE-BASED SYSTIEMS E[MCIN, RIIA. ROSIE

IF CONDITIONS THEN ACTIONS

INTELLIGIBILITY, MODIFIABILITY. EXPtA N ION

END-USER INVOLVEMENT

NEW ARCHITECTURES

MULTI-LEVEL MODELS FOR ABSTRACTION AND ADAPTIVE

DETAIL COMPUTATION

GOAL-ORIENTED FOCUSING, SAMPLING. AND REPORTING

Figure 2

Recent work in Al has concentrated heavily on improved methods for

representing knowledge, building knowledge bases, and encoding heuristic

rules. These reflect, in a larger sense, a new approach to modeling.

Most previous computer science work in modeling has been tightly coupled

to simulation. It is natural therefore that improved techniques for

modeling and simulation should go hand in hand.

AI contributes new capabilities, new languages, and new

architectures for models. I will review these contributions each in

turn.

The new capabilities include non-procedural descriptions and new

methods for manipulating modeled entities. The non-procedural, or

A- .
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"symbolic" descriptions, provide two benefits. First, they allow us to

describe many types of entities and behaviors that don't readily admit

to mathematical or state-change representations. Second, they support

deductive inference and analysis, problem-solving methods of recognized

importance. Within the framework of symbolic descriptions, we can

construct models of important systems which incorporate mathematical as

well as non-mathematical relationships. This provides a basis for

integrating models of physical processes, human behavior, and various

constraints.

In the area of modeling languages, a host of new tools are

emerging. We have focused our efforts on a variety of rule-based

systems. Many of these were initially inspired by the MYCIN program for

infectious disease diagnosis (Shortliffe, 1976). Recently, a version of

MYCIN without the medical knowledge has been developed which is called

EMYCIN (Van Melle, 1980). Along similar lines, Rand developed the RITA

system (Anderson, 1976). The newest descendant of this tradition is the

ROSIE language, a rule-oriented system for implementing expertise. This

language provides a general purpose programming system, an interactive

programming environment, symbolic modeling and deductive capabilities,

and a friendly and easily learned English syntax.

These new languages have been designed with several goals in mind.

First, they should simplify the problem of encoding knowledge. Equally

important, however, they should provide an intelligible encoding of that

knowledge which is accessible to domain-experts and problem-solving

practitioners. Intelligible models are a prerequisite of end-user

involvement in the modeling process. Because model construction is a
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continuing process, these new languages offer the promise of

significantly improved and enhanced models deriving from greater user

involvement in the modeling process. Moreover, we believe that

intelligible computer code, specifically that encoded in English,

provides a natural basis for explaining the system's actions.

New architectures for simulations are also arising. In our work,

in particular, we face the problem of making complex system models

comprehensible to the agents that employ them (people cr machines).

Thus, although we require extensive detail in our model for some

purposes, we need to simplify and abstract the model for many other

purposes. This leads naturally to the idea of multi-level models in

which the same relationships are represented simultaneously at different

levels of precision and aggregation. Such models should also support

intelligent use of resources in time-stressed situations. By choosing

to model events at the least detailed level possible for a given purpose

or at the most detailed level possible given limited computing time, we

adapt our computation to an appropriate level of detail.

Another major change in the architecture of simulations concerns

the fundamental purpose of simulating a model, namely to answer some

question. Ordinarily, a large simulation must execute completely before

any answers can be culled from its results. We have turned simulations

inside-out, in a sense. We view them as question-answerers that are

executed solely to collect needed data. Thus, beginning with a

question, we use simulation-management functions to focus the simulator

towards the computations required for the question-at-hand. In the

strategic air forces model for example, we may choose to ignore whole
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geographic regions or kinds of air defenses in answering particular

questions.

Within this goal-oriented framework of simulation, we have also

introduced the concepts of concurrent, statistical sampling to produce

more timely and efficient analyses of the simulated events. The

simulator collects only those data relevant to the current questions.

Thus, at the moment the simulator completes the computations in focus,

the desired results can be produced.

BOMBER PENETRATION EVENTS

TAK EULCUS

FIGHTER

ki WR SRAM
k

F IG H-TLI BAISf

Figure 3
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Figure 4

BEHAVIOR RULES OF OBJECTS

GCI

IF PENETRATOR IS IN MY RADAR RANGE

THEN TELL MY FILTER CENTER ABOUT PENETRATOR

ADD PENETRATOR TO MY LIST OF OBJECTS IN RANGE

MONITOR PENETRATOR THROUGH RADAR

FILTER CENTER

IF PENETRATOR P IS IN RANGE Of CI GC.

THEN ADD P To MY LIST OF TRACKED PENS

ADD FACT THAT G IS TRACKING P

IF P IS NEW. THEN REOUEST FIGHTER ASSIGNMENT

F IGHTER-

IF PENETRATOR IS IN MY RANGE

THEN DO A MONTI CARLO FOR DETECTION

If PENETRATOR IS DETECTED THEN FIRE MISSIL

Figure 5

' i~i1
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Figures 3, 4, and 5 illustrate some of these new modeling concepts

in the strategic air force problem. Figure 3 illustrates the variety of

objects, behaviors, and events in a hypothetical U.S.-U.S.S.R. conflict.

Figure 4 illustrates some of the Fortran code in an actual 350,000 line

program used to model these entities for military planning purposes.

Unfortunately, such code cannot be understood by anyone and, as a

consequence, it cannot be continually modified to reflect evolving

reality. Worse yet, it cannot be scrutinized and contemplated by

military experts; thus, it should not be greatly trusted.

In Figure 5, we have illustrated the kind of simulator language our

ROSS project is developing. Simplified behavior rules for ground

control intercept radars (GCI), command-control filter centers, and air

defense fighter interceptors are shown. Each rule, presumably, provides

a clear, intelligible model of behavior. Rules quite like these

constitute our current model and associated simulation.

I.
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IV. SITUATION ASSESSMENT AS A PROBLEM OF INTERPRETATION

In AI, the problem of perception has come to be viewed as a problem

of inerpreting observations vis-a-vis a model. When this paradigm is

applied to systems management, it suggests that to understand what a

system is doing we need to interpret its behavior vis-a-vis a model of

that system.

Perhaps the best examples of AI systems that perform interpretation

tasks come from the domain of speech understanding. While the speech

understanding problem is interesting in its own right, in this paper I

will introduce it simply to'illustrate two different AI approaches to

interpretation. Each of these suggests a general approach to

interpretation which will find application in different situation

assessment contexts. Readers interested in the speech understanding

problem should consult Lea (1980) or Erman et al. (1980).

TWO ALTERNATIVE Al INTERPRETATION SYSTEMS:
1. THE HEARSAY-1 SPEECH UNDERSTANDING SYSTEM

SEMANT I C

SYNTA( TIC

VJuRD-TUPL[ [ _ REPO1Th O

LEXICAL ... . , REP T O .J l

SYLLABIC I I I I I I I l

TAT IK

PHUNETIC IIIII 1I I IlIII 11l I I

SEGNt E1TAL III IIIIIIIIIIII IIIIIIIIIIIIIII III IIIIIIII I I IIII

ACUUST IC

Figure

Figure 6
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TWO ALTERNATIVE Al INTERPRETATION SYSTEMS:
2. THE HARPY SPEECH UNDERSTANDING SYSTEM

I A

NN

N - EM1

s£..r N UN I - -S14AM4

A PRIORI NETWORK

Figure 7

I will describe two different systems which understand connected

English sentences drawn from a syntactically constrained grammar with 4

1000-word vocabulary. These two systems were called Hearsay-Il (Erman

et al., 1980) and Harpy (Lowerre & Reddy, 1980). These systems differ

primarily in the way they organize and control the search for likely

interpretations.

To understand speech, a system needs a variety of capabilities. It

must transduce the physical signal into an acoustic measurement, usually

*a waveform relating amplitude to time. Intervals of these acoustic
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measurements correspond to spoken sounds, such as phonemes, syllables

and words. The speech understanding system must associate the physical

parameter measurements with sequences of words that might have produced

the observations. In doing this, it must rule out implausible word

sequences. The central problem for such systems is considering

plausible words and word sequences, evaluating them, and selecting the

most probable.

The Hearsay-Il system is illustrated in Figure 6. This figure

depicts the "blackboard" database structure on which hypothetical

interpretations are recorded. The blackboard is a two-dimensional

structure which locates hypotheses based on their time of occurrence in

the spoken utterance and their interpretation at various levels of

abstraction. These levels define a hierarchy of increasingly aggregated

interpretations. The lowest level consists of acoustic segments,

intervals of speech which manifest relatively unchanging physical

measurements. At the next higher level, one or more successive segments

may be interpreted as a particular acoustic phone. Our speech systems

employed approximately 80 distinct phones. Successive levels aggregate

and interpret contiguous hypothetical interpretations from the adjacent

lower level. In Hearsay-Il, hypotheses could be formed at the lexical

level (any of more than 1000 different English words), the word-tuple

level (sequences of words that appear grammatical according to a first-

order Markov approximation to the grammar), the syntactic level

(grammatical phrases), and the semantic level (meaningful sentences).

Figure 6 portrays the collection of hypotheses generated midway

through the analysis of "Are there any new reports on space complexity?"

-- a,/.................. ' . ........... , ' "
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At this point in the analysis, the highest-level, correct hypothesis is

the three-word sequence, "...new reports on...". During each interval

Hearsay-II usually maintained on the blackboard nearly ten times as many

incorrect hypotheses as correct ones. Nevertheless, it considered

overall a nearly negligible fraction of all possible hypotheses. Such

efficient search is the crux of speech understanding.

In forming an overall interpretation of a sentence, Hearsay-II

acted somewhat like an organization of cooperating specialists.

Distinct programs performed analyses at the various levels of

interpretation. Each specialist looked for hypotheses on the blackboard

that could trigger its own inferential capacities to suggest new or

modified hypotheses at nearby levels. A managerial specialist watched

the overall flow of activity and regulated resource allocations to

coordinate and focus the team activity. In this way, Hearsay-Il

integrated multiple, diverse sources of knowledge in a cooperating

problem-solving system.

The overall approach to problem-solving that Hearsay-Il employed

has been called "opportunistic" (cf. Hayes-Roth & Hayes-Roth, 1979; Nii

& Feigenbaum, 1978). Many people believe that such a system mirrors the

cognitive processes of human problem-solving both within an individual

and within groups of individuals. In fact, the blackboard mechanism was

motivated in large part by the desire to allow several human speech

experts to work independently in the construction of specialist

programs. By restricting the specialists' interactions to blackboard

hypothesization, each specialist was relieved of responsibilities for

understanding the internal models employed by the others.

. .74-
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The Harpy system, on the other hand, employed a radically different

approach to organizing and controlling the search for plausible

interpretations. Harpy integrates all levels of speech knowledge into a

homogeneous finite state transition network representing the possible

sequences of spoken phones. To create such a network, all speech

knowledge must be represented either in terms of finite state grammars

or corresponding finite state transition graphs. Thus, there is one

graph for each word which re-expresses the word in terms of the possible

sequences of phones that it can manifest. Similarly, the grammar of

English is represented as a network consisting of all possible sequences

of words. These two types of networks are combined by successively

replacing tokens at one level by their network definitions at the

adjacent low r level. This continues until the lowest level

representation is reached at which point the entire language is modeled

by a huge network of possible lowest-level transitions.

Figure 7 schematizes a small portion of such a network. Along the

uppermost path through the network, the successive phones denote one

particular pronunciation of "Are there any new reports ... ". The figure

also depicts the search process Harpy employs. To interpret a speech

input, Harpy moves through the network from start to finish following a

few of the most plausible paths of interpretation. At each point, it

compares the next segment of speech with the possible continuations of

its current path interpretations. Each is evaluated for its

acceptability relative to the model's expectation. An overall

goodness-of-fit measure is associated with the extended path. A small

number, usually around 200, of the most probable paths are retained and
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the process iterates.

When Harpy reaches the end of the input utterance, it accepts the

most probable path it has generated as the interpretation of the

sentence. This search method, which has been called "beam search,"

operates in a manner akin to dynamic programming with pruning. By using V

stored networks and by pruning unlikely paths from consideration, the

beam search technique achieves amazing efficiency.

Figure 8 summarizes the contrasting attributes of Hearsay-Il and

Harpy. The numbers in Figure 8 aggregate approximately actual

performance statistics.

COMPARING HEARSAY-Il AND HARPY

FEATORE HEARSAY- I I HARPY

CNNECTED SPEECH IN I00-WRDS YES YES

PROCESSING TIME PER SECOND
OF SPEECH Iot1

SENTENCES CCRRECTLY UNDERSTCD 90% 9O1,

KNUVLEDGE REPRESENTATIkN INDEPENDENT CGMPILED
SPECIALISTS FINITE-STATE

NET ,' RI(

HEURISTIC SEARCH METHD OPPORTUNISTIC BEAM SEARCH
HYPOTHESIZE-

AND-TEST

Figure 8

i w 9 7
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Two important lessons about interpretation tasks should be drawn

from this comparative review. First, interpretation lends itself to a

variety of methods which vary chiefly in the way they organize, apply,

and control knowledge. Second, well-defined problem-solving tasks can

often be performed with great efficiency if flexible control strategies

are replaced by rigid, systematic control algorithms. Of course, in

management science both of these lessons are familiar ones. It seems

pleasing that our Al systems may be reaching the level of complexity

where the same principles begin to apply.

I have surveyed these speech understanding applications because

they provide the most detailed and concrete examples of existing

interpretation systems. They also reveal the general ideas that govern

situation assessment. Situation assessment requires two key

ingredients, a model and a method for assigning meaning to sensor data.

In the speech systems, we saw the same underlying knowledge represented

in two different ways. In Hearsay-Il, the knowledge was segmented into

individual procedures that acted within their own levels of

representation and analysis. In Harpy, all knowledge was represented in

a homogeneous, large transition network. Each of these two

representations was engineered to support the kind of control strategy

the designers envisioned. In the case of Hearsay-Il, the control

concept was opportunistic and cooperative problem-solving. In Harpy, it

was beam search.



r

-21-

In the future, I anticipate that we will see other types of control

strategies with corresponding specialized representations for the system

models which underlie the interpretation process.

I.t
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V. MODEL-BASED DYNAMIC PLANNING AND CO.TROL

Our approach to planning and control for managing systems rests

heavily on the use of a system model for future projection and option

evaluation. Basically, we view planning and control as a continual

process of situation assessment and dynamic replanning. The overall

process consists of two phases, as shown in Figures 9a and 9b.

AN Al APPROACH TO DYNAMIC REPLANNING
I • I Real-Time

C u r r e n t P la n C u r r e n t M o d e l C o m p a rr M o d e l

~[M_"

Figure 9a

a wn duta
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AN Al APPROACH TO DYNAMIC REPLANNING

I , , I Real-Time

Current Plan J Current Mo delfl Co p r Jo e Sensor Data

Ia

.4

{Look-Ahead Revise M d l _ Look- head k
t to S i m. u la t e to S i m atet

~and Opportunities

Hyohtcl Hypot'hetical

Re-PlnninPlans

Figure 9b

The first phase of planning and control requires us to update our

initial model to accommodate sensor data and then to project the likely

consequences of currently planned actions. Most models have parameters

or alternatives which must be fit to the sensor data. In speech, for

examplethe models permit 1000 alternative words that may occur during

each interval in time. In the case of air traffic control, on the other

hand, the parameters stand for the possible identities, intentions,

trajectories and current states of each aircraft to be controlled. Our

models enable us to predict what our sensors should see under various

- V 
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alternatives, and we find plausible those interpretations that are

consistent with the data. Situation assessment tunes our model to fit

the current data.

At this point, we use the model to look-ahead into the future.

Assuming all entities behave according to the plans and processes

prescribed by the model, we can anticipate the likely consequences under

current assumptions. In the case of air traffic control, for example,

we can look to see if any likely collisions will occur. In general, we

simulate specifically to search for projected threats and opportunities.

The next figure closes the replanning loop in an obvious way. We

take the projected threats and opportunities as inputs to a replanning

process. Such a process generates hypothetical new plans. For example,

we might imagine turning both planes in a projicted collision ninety

degrees from their current bearing. Such hypothetical plans give rise

to revised, hypothetical models. These in turn may again be simulated

to project potentially undesirable consequences. In turn, we may need

to refine further the hypothetical plan. Or, worse yet, the plan may

prove so unpromising that we may abandon it and explore alternative

kinds of fixes.

For such dynamic replanning to work we need two capabilities. The

first is a method for generating alternative plans. The second is a

fast method for projecting the hypothetical plan's consequences. Toward

the first objective, we are developing a variety of planning mechanisms

with particular heuristic methods in various domains (e.g., air traffic

control, tactical air targeting, route planning). Toward the second

objective, we are developing new architectures for rapid, goal-oriented

.
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simulation, as previously described.

It seems likely that systematic methods for modeling, situation

assessment, and dynamic replanning will emerge during the next decade of

AI research.

__ _
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VI. CONCLUSION

CURRENT STATUS AND FUTURE PROSPECTS

MODELING

VERY HIGH-LEVEL LANGUAGE!

HYBRID PHYSICAL & BEHAVIORAL MODELIM,

NIOD(tS AS KNOWLEDGE BASES

SITUATION ASSESSMENT

SPEECH AND IMAGE UNDERSTANDING

SYSTEM MONITORIN(

INTr(LI.,fNCf ANAlYSIS

GFNIRAL PURPOSE PROCEDURES

PLANNING

OPPORTUNISTIC INITIAL PLAN FORMULATION

DYNAMIC MONITORING AND PROJECTION

SYSTEMATIC, ITERATIVE PLAN REFINEMENT

Figure 10

Figure 10 summarizes many of the points covered in this paper. It

also suggests some of the possible benefits that we can expect from this

line of work. For example, we anticipate that as modeling languages

grow in sophistication and intelligibility, models will become valuable

assets that systematize important bodies of knowledge.

I have surveyed a broad area of research in this very short paper.

This raises the significant danger of oversimplification and glibness.

In fact, the field of AI has just begun to scratch the surface of

systems management. However, the early results seem quite promising as

well as generalizable. They also reinforce the belief that success in

tA
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Al applications requires a blend of theory, domain specific knowledge,

and engineering. In the absence of any apparent obstacles, we look

forward to continued steady progress on all fronts.



-29-

VII. REFERENCES

Anderson, Robert H. and Gillogly, J. J. Rand intelligent terminal agent

(RITA): design philosophy. R-1809-ARPA, The Rand Corporation,

Santa Monica, California, 1976.

Erman, L. D., Hayes-Roth, F., Lepser, V.R., and Reddy, D. R. The

Hearsay-II speech understanding system: integrating knowledge to

resolve uncertainty. Computing Surveys, 1980,

Gorlin, D., Hayes-Roth, F., Rosenschein, S., Sowizral, H., Waterman, D.

A. Programming in ROSIE: an introduction by means of examples.

N-1646-ARPA. The Rand Corporation, Santa Monica, California,

February 1981.

Gorlin, D., Hayes-Roth, F., Rosenschein, S., Sowizral, H., Waterman, D.

A. Rationale and Motivation for ROSIE. N-1648-ARPA. The Rand

Corporation, Santa Monica, California, February 1981.

Gorlin, D., Hayes-Roth, F., Rosenschein, S., Sowizral, H., Waterman, D.

A. The ROSIE language reference manual, N-1647-ARPA. The Rand

Corporation, Santa Monica, California, February 1981.

Hayes-Roth, B. and Hayes-Roth, F. A cognitive model of planning.

Cognitive Science, 1979, 3, 275-310.

Klahr, Philip and Faught, W. S. Knowledge-Based Simulation. In

Proceedings of the First Annual National Conference on Artificial

Intelligence, Stanford University, 1980.

........... I*t 4



1
-30-

Lea, Wayne A. (ed.), Trends in Speech Recognition, Prentice-Hall,

Englewood Cliffs, New Jersey, 1980.

Lowerre, Bruce and Reddy, D. R. The Harpy speech understanding system.

In Wayne Lea (ed.), Trends in Speech Recognition. Prentice-Hall,

Englewood Cliffs, New Jersey.

Nii, H. P. and Feigenbaum, E. A. Rule based understanding of signals.

In Donald Waterman and Frederick Hayes-Roth (eds.), Pattern-

Directed Inference Systems, Academic Press, New Jersey, 1978.

Shortliffe, E. H., Computer-based Medical Consultations: MYCIN, American

Elsevier, New York, 1976.

Waterman, D. A., Anderson, R. H., Hayes-Roth, F., Klahr, P., Martins,

G., Rosenschein, S. J., Design of a rule-oriented system for

implementing expertise. N-1158-l-ARPA. The Rand Corporation,

Santa Monica, California, May 1979.

Waterman, D. A. and Peterson M. Models of Legal Decisionmaking. R-

2717-ICJ, The Rand Corporation, Santa Monica, California, 1981.

Waterman, D. A. and Peterson, M. Rule-based models of legal expertise.

In Proceedings of the First Annual National Conference on

Artificial Intelligence, Stanford University, 1980.

Wesson, Robert. Planning in the world of the air traffic cor.troller.

Proceedings of the 5th International Joint Conference on Artificial

Intelligence, MIT AI-Lab, Cambridge, Massachusetts, 1977.



-31-

van Melle, W. A domain-independent production-rule system for

consultation programs. Proceedings of the 6th International

Joint Conference on Artificial Intelligence, August 1979.

MI'~R -



1


